Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6479 -
Telegram Group & Telegram Channel
🔥 Холивар: scikit-learn — мастодонт ML или пора переходить на что-то посвежее?

🎓 С одной стороны — стабильный и понятный scikit-learn:
• простота API,
• огромная документация,
• идеально подходит для обучения и базовых ML-пайплайнов.

💥 Но многие говорят: «Он уже не тянет продакшн»:
• нет GPU,
• нет удобной работы с пайплайнами в стиле TensorFlow/PyTorch,
• нет AutoML по умолчанию.

И начинают смотреть в сторону LightGBM, XGBoost, CatBoost, PyCaret, H2O, или даже Spark ML.

👀 А кто-то вообще считает, что Scikit-learn — это «велосипед прошлого десятилетия».

Делитесь своим стеком — кто чем пользуется в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/it/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Scikit-learn forever: надёжный, понятный, любимый
👍 — Уже давно перешёл на градиентный бустинг и AutoML
🔥 — Я вообще на PyTorch/TensorFlow, мне склерн не нужен
🤔 — Использую всё понемногу, зависит от задачи

Библиотека дата-сайентиста #междусобойчик
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6479
Create:
Last Update:

🔥 Холивар: scikit-learn — мастодонт ML или пора переходить на что-то посвежее?

🎓 С одной стороны — стабильный и понятный scikit-learn:
• простота API,
• огромная документация,
• идеально подходит для обучения и базовых ML-пайплайнов.

💥 Но многие говорят: «Он уже не тянет продакшн»:
• нет GPU,
• нет удобной работы с пайплайнами в стиле TensorFlow/PyTorch,
• нет AutoML по умолчанию.

И начинают смотреть в сторону LightGBM, XGBoost, CatBoost, PyCaret, H2O, или даже Spark ML.

👀 А кто-то вообще считает, что Scikit-learn — это «велосипед прошлого десятилетия».

Делитесь своим стеком — кто чем пользуется в 2025?
Давайте обсужим в комментариях! ⤵️
Инструкция о том, как оставить комментарий: https://www.tg-me.com/it/Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение/com.dsproglib/6244

❤️ — Scikit-learn forever: надёжный, понятный, любимый
👍 — Уже давно перешёл на градиентный бустинг и AutoML
🔥 — Я вообще на PyTorch/TensorFlow, мне склерн не нужен
🤔 — Использую всё понемногу, зависит от задачи

Библиотека дата-сайентиста #междусобойчик

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6479

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from it


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA